
Recurrent Neural Networks
for Language Modeling

CSE392 - Spring 2019
Special Topic in CS

Tasks

● Language Modeling: Generate

next word, sentence ≈ capture

hidden representation of

sentences.

● Recurrent Neural Network and
Sequence Modelshow?

Language Modeling

Task: Estimate P(wn| w1, w2, …, wn-1)
:probability of a next word given history
P(fork | He ate the cake with the) = ?

Language Modeling

History
(He, at, the, cake, with, the)

Trained
Language

Model

What is the next word
in the sequence?

Training Corpus
training

(fit, learn)

Task: Estimate P(wn| w1, w2, …, wn-1)
:probability of a next word given history
P(fork | He ate the cake with the) = ?

 icing the fork carrots cheese spoon

Neural Networks: Graphs of Operations
(excluding the optimization nodes)

(Jurafsky, 2019)

“hidden layer”

y(t) = f(h(t)W)

Activation Function

h(t) = g(h(t-1) U + x(t)V)

Language Modeling

History
(He, at, the, cake, with, the)

Trained
Language

Model

What is the next word
in the sequence?

Training Corpus
training

(fit, learn)

Task: Estimate P(wn| w1, w2, …, wn-1)
:probability of a next word given history
P(fork | He ate the cake with the) = ?

 icing the fork carrots cheese spoon

Language Modeling

HistoryLast word
(He, at, the, cake, with, the)

Trained
Language

Model

What is the next word
in the sequence?

Task: Estimate P(wn| w1, w2, …, wn-1)
:probability of a next word given history
P(fork | He ate the cake with the) = ?

 icing the fork carrots cheese spoon

Training Corpus
training

(fit, learn)

Language Modeling

Last word
(the)

Trained
Language

Model

What is the next word
in the sequence?

Task: Estimate P(wn| w1, w2, …, wn-1)
:probability of a next word given history
P(fork | He ate the cake with the) = ?

 icing the fork carrots cheese spoon

Training Corpus
training

(fit, learn)

ht: a vector that we hope “stores”
relevant history from previous inputs:

He, at, the, cake, with,

Optimization:

Backward Propagation

...

#define forward pass graph:

h
(0)

= 0

for i in range(1, len(x)):

h
(i)

= tf.tanh(tf.matmul(U,h
(i-1)

)+ tf.matmul(W,x
(i)

)) #update hidden

state

y
(i)

= tf.softmax(tf.matmul(V, h
(i)

)) #update output

...

cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(y_pred))

cost

Optimization:

Backward Propagation

...

#define forward pass graph:

h
(0)

= 0

for i in range(1, len(x)):

h
(i)

= tf.tanh(tf.matmul(U,h
(i-1)

)+ tf.matmul(W,x
(i)

)) #update hidden

state

y
(i)

= tf.softmax(tf.matmul(V, h
(i)

)) #update output

...

cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(y_pred))

To find the gradient for the overall graph, we
use back propogation, which essentially
chains together the gradients for each node
(function) in the graph.

With many recursions, the gradients can
vanish or explode (become too large or
small for floating point operations).

cost

Optimization:

Backward Propagation

cost

(Geron, 2017)

How to address exploding and vanishing gradients?

Ad Hoc approaches: e.g. stop backprop iterations very early. “clip” gradients when
too high.

How to address exploding and vanishing gradients?

Dominant approach: Use Long Short Term Memory Networks (LSTM)

RNN model “unrolled” depiction

(Geron, 2017)

How to address exploding and vanishing gradients?

The LSTM Cell

RNN model “unrolled” depiction

(Geron, 2017)

How to address exploding and vanishing gradients?

The LSTM Cell

RNN model “unrolled” depiction

(Geron, 2017)

“long term state”

“short term state”

How to address exploding and vanishing gradients?

The LSTM Cell

RNN model “unrolled” depiction

(Geron, 2017)

“long term state”

“short term state”

How to address exploding and vanishing gradients?

The LSTM Cell

“long term state”

“short term state”

How to address exploding and vanishing gradients?

The LSTM Cell

“long term state”

“short term state”

bias term

Common Activation Functions
z = h(t)W

Logistic: 𝜎(z) = 1 / (1 + e-z)

Hyperbolic tangent: tanh(z) = 2𝜎(2z) - 1 = (e2z - 1) / (e2z + 1)

Rectified linear unit (ReLU): ReLU(z) = max(0, z)

LSTM

The LSTM Cell

“long term state”

“short term state”

The LSTM Cell

“long term state”

“short term state”

LSTM

The LSTM Cell

“long term state”

“short term state”

LSTM

Input to LSTM

?

Input to LSTM

?
● One-hot encoding?
● Word Embedding

Input to LSTM

-0.5
3.5
3.21
-1.3
1.6

Input to LSTM

-0.5
3.5
3.21
-1.3
1.6

-2.0
5.5
-0.3
-1.1
6.3

0.53
2.5
3
-2.3
0.76

1.53
1.5
-3.2
2.3
10

1.53
1.5
-3.2
2.3
10

12
0.15
1.1
-0.7
-5.4

Input to LSTM

-0.5
3.5
3.21
-1.3
1.6

-2.0
5.5
-0.3
-1.1
6.3

0.53
2.5
3
-2.3
0.76

1.53
1.5
-3.2
2.3
10

1.53
1.5
-3.2
2.3
10

12
0.15
1.1
-0.7
-5.4sam

e

The GRU

Gated Recurrent Unit

(Geron, 2017)

The GRU

Gated Recurrent Unit

(Geron, 2017)

relevance gate
update gate

The GRU

Gated Recurrent Unit

(Geron, 2017)

relevance gate
update gate A candidate for updating h,

sometimes called: h~

The GRU

Gated Recurrent Unit

The cake, which contained candles, was eaten.

What about the gradient?
The gates (i.e. multiplications
based on a logistic) often end up
keeping the hidden state exactly
(or nearly exactly) as it was. Thus,
for most dimensions of h,

h(t) ≈ h(t-1)

The cake, which contained candles, was eaten.

What about the gradient?
The gates (i.e. multiplications
based on a logistic) often end up
keeping the hidden state exactly
(or nearly exactly) as it was. Thus,
for most dimensions of h,

h(t) ≈ h(t-1)

This tends to keep the gradient
from vanishing since the same
values will be present through
multiple times in backpropagation
through time. (The same idea
applies to LSTMs but is easier to
see here).

The cake, which contained candles, was eaten.

How to train an LSTM-style RNN

cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(y_pred))

Cost Function: -- ”cross entropy error”

How to train an LSTM-style RNN

cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(y_pred))

Cost Function: -- ”cross entropy error”

How to train an LSTM-style RNN

cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(y_pred))

Cost Function: -- ”cross entropy error”

Stochastic Gradient Descent -- a method

RNN-Based Language Models

Take-Aways

● Simple RNNs are difficult to train: exploding and vanishing gradients
● LSTM and GRU cells solve

○ Hidden states past from one time-step to the next, allow for long-distance
dependencies.

○ Gates are used to keep hidden states from changing rapidly (and thus
keeps gradients under control).

○ LSTM and GRU are complex, but simply a series of functions:
■ logit (w٠x)
■ tanh (w٠x)
■ element-wise multiplication and addition

○ To train: mini-batch stochastic gradient descent over cross-entropy cost

0.53
1.5
3.21
-2.3
.76

