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Tasks

● Language Modeling: Generate 

next word, sentence ≈ capture 

hidden representation of 

sentences. 

● Recurrent Neural Network and 
Sequence Modelshow?



Language Modeling

Task: Estimate P(wn| w1, w2, …, wn-1)
:probability of a next word given history
P(fork | He ate the cake with the) = ?



Language Modeling

History
(He, at, the, cake, with, the)

Trained
Language 

Model

What is the next word 
in the sequence?

Training Corpus
training

(fit, learn)

Task: Estimate P(wn| w1, w2, …, wn-1)
:probability of a next word given history
P(fork | He ate the cake with the) = ?

    icing     the      fork   carrots cheese spoon



Neural Networks: Graphs of Operations
(excluding the optimization nodes)

(Jurafsky, 2019)

“hidden layer”

y(t) = f(h(t)W)

Activation Function

h(t) = g(h(t-1) U + x(t)V)
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ht: a vector that we hope “stores” 
relevant history from previous inputs:

He, at, the, cake, with, 



Optimization:

Backward Propagation 

...

#define forward pass graph:

h
(0) 

= 0

for i in range(1, len(x)):

h
(i) 

= tf.tanh(tf.matmul(U,h
(i-1)

)+ tf.matmul(W,x
(i)

)) #update hidden 

state

y
(i) 

= tf.softmax(tf.matmul(V, h
(i)

)) #update output

...

cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(y_pred))

cost



Optimization:

Backward Propagation 

...

#define forward pass graph:

h
(0) 

= 0

for i in range(1, len(x)):

h
(i) 

= tf.tanh(tf.matmul(U,h
(i-1)

)+ tf.matmul(W,x
(i)

)) #update hidden 

state

y
(i) 

= tf.softmax(tf.matmul(V, h
(i)

)) #update output

...

cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(y_pred))

To find the gradient for the overall graph, we 
use back propogation, which essentially 
chains together the gradients for each node 
(function) in the graph.

With many recursions, the gradients can 
vanish or explode (become too large or 
small for floating point operations).  

cost



Optimization:

Backward Propagation 

cost

(Geron, 2017)



How to address exploding and vanishing gradients?

Ad Hoc approaches: e.g. stop backprop iterations very early. “clip” gradients when 
too high. 



How to address exploding and vanishing gradients?

Dominant approach: Use Long Short Term Memory Networks (LSTM)

RNN model “unrolled” depiction

(Geron, 2017)



How to address exploding and vanishing gradients?

The LSTM Cell

RNN model “unrolled” depiction

(Geron, 2017)



How to address exploding and vanishing gradients?

The LSTM Cell

RNN model “unrolled” depiction

(Geron, 2017)

“long term state”

“short term state”



How to address exploding and vanishing gradients?

The LSTM Cell

RNN model “unrolled” depiction

(Geron, 2017)

“long term state”

“short term state”



How to address exploding and vanishing gradients?

The LSTM Cell

“long term state”

“short term state”



How to address exploding and vanishing gradients?

The LSTM Cell

“long term state”

“short term state”

bias term



Common Activation Functions
z = h(t)W

Logistic:  𝜎(z) = 1 / (1 + e-z)

Hyperbolic tangent: tanh(z) = 2𝜎(2z) - 1 = (e2z - 1) / (e2z + 1)

Rectified linear unit (ReLU): ReLU(z) = max(0, z)



LSTM

The LSTM Cell

“long term state”

“short term state”
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The LSTM Cell
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Input to LSTM

?



Input to LSTM

?
● One-hot encoding?
● Word Embedding
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The GRU

Gated Recurrent Unit

(Geron, 2017)
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The GRU

Gated Recurrent Unit

(Geron, 2017)

relevance gate
update  gate A candidate for updating h, 

sometimes called: h~



The GRU

Gated Recurrent Unit

The cake, which contained candles, was eaten. 



What about the gradient?
The gates (i.e. multiplications 
based on a logistic) often end up 
keeping the hidden state exactly 
(or nearly exactly) as it was. Thus, 
for most dimensions of h, 

h(t) ≈ h(t-1)  

The cake, which contained candles, was eaten. 



What about the gradient?
The gates (i.e. multiplications 
based on a logistic) often end up 
keeping the hidden state exactly 
(or nearly exactly) as it was. Thus, 
for most dimensions of h, 

h(t) ≈ h(t-1)  

This tends to keep the gradient 
from vanishing since the same 
values will be present through 
multiple times in backpropagation 
through time. (The same idea 
applies to LSTMs but is easier to 
see here). 

The cake, which contained candles, was eaten. 



How to train an LSTM-style RNN

cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(y_pred))

Cost Function:  -- ”cross entropy error”
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How to train an LSTM-style RNN

cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(y_pred))

Cost Function:  -- ”cross entropy error”

Stochastic Gradient Descent -- a method 



RNN-Based Language Models

Take-Aways

● Simple RNNs are difficult to train: exploding and vanishing gradients
● LSTM and GRU cells solve

○ Hidden states past from one time-step to the next, allow for long-distance 
dependencies. 

○ Gates are used to keep hidden states from changing rapidly (and thus 
keeps gradients under control). 

○ LSTM and GRU are complex, but simply a series of functions:
■ logit (w٠x)
■ tanh (w٠x)
■ element-wise multiplication and addition

○ To train: mini-batch stochastic gradient descent over cross-entropy cost
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